
String diagrams for higher mathematics with wiggle.py

Simon Burton

Quantinuum

February 14, 2023

Abstract

We introduce wiggle.py which is a python based library for vector graphics rendering
of 3-dimensional string (surface) diagrams for monoidal bicategories. The library uses
linear constraint optimization, resulting in a highly customizable layout engine.

1 Introduction

The goal of wiggle.py is to render 3-dimensional string diagrams (surface diagrams) for
monoidal bicategories, subject to the following requirements:

(1) easy to use “pythonic” interface,
(2) separate mechanism over policy [Ray03], and
(3) include LATEX text, with pdf/svg/png output.
Like a web framework, wiggle.py can do fancy diagrams with one line of code, but

things get much more tricky and verbose when customizing. The implementation strategy
used was to keep rewriting and refactoring the codebase until it started to satisfy the above
requirements. It seems quite impossible to design such a codebase upfront, unless one has
previously written such a thing. The resulting design appears somewhat baroque, but for
good reasons. wiggle.py is more like a compiler than a web framework under the hood.

The layout algorithm is based on linear programming. The user constructs cube-shaped
cells (or “bricks”[HH19]) by composing horizontally, vertically and depth-wise. This compo-
sition results in a set of weak constraints that may be violated, and strong constraints that
cannot be violated. The weak constraints produce an objective function that is minimized;
these come from the position of the cells. The strong constraints are equations to solve, which
come from gluing surfaces, strings and vertices (“pips”) together. The position of the cells
serve as a scaffolding within which the surfaces, strings, and vertices reside. Separating the
constraints this way allows for customizing the layout: the weak constraints may be pushed
around by the user, but there’s no reason to allow the strong constraints to be altered.

String diagrams (2-dimensional) for monoidal categories are introduced in [JS91, BS09,
Sel10], and are connected to the earlier work [Pen71]. The use of string (and surface)
diagrams for (bi-)categories is nicely introduced in [Mar14], and for higher categories in
[Hum12, BMS12, Reu17, HV19]. Other python tools include rewalt [HK22] which takes
a disciplined approach to higher-dimensional structures, while only rendering 2-dimensional
string diagrams. The online tool homotopy.io [RV19] can render 3-dimensional string dia-
grams, but has limited customization support, and is javascript based.

1

The use of string (surface) diagrams in higher category theory is now widespread, for
example, see [PS12] Fig. 15. Another approach is to use “movies” or 2-dimensional slices
through higher-dimensional diagrams, for example [Car11, Ver17, CP22].

In the appendix below we give an example interactive session using wiggle.py .

References

[BMS12] John W Barrett, Catherine Meusburger, and Gregor Schaumann. Gray categories
with duals and their diagrams. arXiv preprint arXiv:1211.0529, 2012.

[BS09] J Baez and M Stay. Physics, topology, logic and computation: A rosetta stone, in
“new structures for physics”, 95–172. Lecture Notes in Phys, 813, 2009.

[Car11] J Scott Carter. Excursion In Diagrammatic Algebra: Turning a sphere from red to
blue, volume 48. World Scientific, 2011.

[CP22] Jonathan A Campbell and Kate Ponto. Riemann-Roch theorems in monoidal 2-
categories. arXiv preprint arXiv:2203.04351, 2022.

[HH19] Jules Hedges and Jelle Herold. Foundations of brick diagrams. arXiv preprint
arXiv:1908.10660, 2019.

[HK22] Amar Hadzihasanovic and Diana Kessler. Data structures for topologically sound
higher-dimensional diagram rewriting. arXiv preprint arXiv:2209.09509, 2022.

[Hum12] Benjamin Taylor Hummon. Surface diagrams for gray-categories. PhD thesis, UC
San Diego, 2012.

[HV19] Chris Heunen and Jamie Vicary. Categories for Quantum Theory: An Introduction.
Oxford University Press, USA, 2019.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in
mathematics, 88(1):55–112, 1991.

[Mar14] Daniel Marsden. Category theory using string diagrams. arXiv preprint
arXiv:1401.7220, 2014.

[Pen71] Roger Penrose. Applications of negative dimensional tensors. Combinatorial math-
ematics and its applications, 1:221–244, 1971.

[PS12] Kate Ponto and Michael Shulman. Duality and traces for indexed monoidal cate-
gories. Theory and Applications of Categories, 26(23):582–659, 2012.

[Ray03] Eric S Raymond. The art of Unix programming. Addison-Wesley Professional, 2003.

[Reu17] David Reutter. Frobenius algebras, Hopf algebras and 3-categories. Talk given at
Perimeter Institute, 2017.

[RV19] David J Reutter and Jamie Vicary. Shaded tangles for the design and verification
of quantum circuits. Proceedings of the Royal Society A, 475(2224):20180338, 2019.

2

[Sel10] Peter Selinger. A survey of graphical languages for monoidal categories. In New
structures for physics, pages 289–355. Springer, 2010.

[Ver17] Dominic Verdon. Coherence for braided and symmetric pseudomonoids. arXiv
preprint arXiv:1705.09354, 2017.

3

Appendix: example wiggle.py session

November 7, 2022

1 Install

The wiggle module lives inside the huygens package. To install:

$ pip install git+https://github.com/punkdit/huygens

This has only been tested on linux.

The constraint satis�er tends to complain a lot, so we turn o� these warnings.

[51]: import warnings

warnings.filterwarnings('ignore')

2 Basic examples

First we make some transparent colors.

[2]: from huygens.namespace import *

pink = color.rgba(1.0, 0.37, 0.36, 0.5)

grey = color.rgba(0.85, 0.85, 0.85, 0.5)

cream = color.rgba(1.0, 1.0, 0.92, 0.5)

cyan = color.rgba(0.0, 0.81, 0.80, 0.5)

yellow = color.rgba(1.0, 0.93, 0.4, 0.5)

Objects, 1-morphisms and 2-morphisms are represented as the classes Cell0, Cell1 and Cell2

respectively. We call these 0-cells, 1-cells and 2-cells.

[3]: from huygens.wiggle import Cell0, Cell1, Cell2

0-cells are rendered as 2-dimensional regions.

[4]: n = Cell0("n", fill=pink)

n

[4]:

1

A 1-cell is rendered as a 1-dimensional separating boundary between two 0-cells.

[5]: m = Cell0("m", fill=yellow)

A = Cell1(m, n)

A

[5]:

For horizontal composition of 1-cells we use the python << operator.

[6]: B = Cell1(n, m)

B<<A

[6]:

2-cells are rendered as a 0-dimensional separating boundary between two 1-cells.

[7]: f = Cell2(A, A)

f

[7]:

These have both a horizontal composition, using << and a vertical composition using the * operator.

[8]: g = Cell2(B, B)

g<<f

[8]:

2

[9]: f*f

[9]:

[10]: C = Cell1(n, n)

Cell2(C, B<<A)

[10]:

The monoidal product is rendered in the third dimension, front to back. By default, wiggle.py

switches to an oblique view whenever we have more than one layer.

[11]: m @ n

[11]:

Here we show a (co-)multiplication for a pseudomonoid.

[12]: Cell1(m @ m, m)

[12]:

3

The (co-)associativity 2-cell is a bit tricky because we need identity 1-cells, and preferably these

should be invisible. We do this by setting the pip_color and stroke to None.

[13]: m_m = Cell1(m, m, pip_color=None, stroke=None)

mm_m = Cell1(m @ m, m)

top = (m_m @ mm_m) << (mm_m)

bot = (mm_m @ m_m) << (mm_m)

assoc = Cell2(top, bot, cone=1.)

assoc

[13]:

The cone=1. assignment makes the wires coming out of the 2-cell straight, like a cone. By default,

these are more curvy. We show this with a Frobeniator 2-cell.

[14]: m_mm = Cell1(m, m @ m)

src = mm_m << m_mm

tgt = (m_mm @ m_m) << (m_m @ mm_m)

Cell2(tgt, src)

[14]:

When we construct a tube, we need an invisible 0-cell to act as the monoidal identity. We call this

i:

[15]: i = Cell0("i", stroke=None)

tube = Cell1(i, m @ m) << Cell1(m @ m, i)

tube

[15]:

4

Here we construct a saddle and use it to build a pair-of-pants.

[16]: saddle = Cell2(

Cell1(m @ m, i) << Cell1(i, m @ m),

m_m @ m_m,

pip_color=None,

)

lfold = Cell2(Cell1(i, m @ m), Cell1(i, m @ m), pip_color=None)

rfold = Cell2(Cell1(m @ m, i), Cell1(m @ m, i), pip_color=None)

pop = lfold << saddle << rfold

pop

[16]:

We can take horizontal, vertical, or depth-wise reversal of a cell, by using the methods h_rev, v_rev

or d_rev.

[17]: pop.v_rev() * pop

[17]:

3 Cell layout and render

Once we have �nished constructing a cell and are ready for rendering, the next thing that happens

is the layout in 3-dimensions. This is where the linear programming constraint solver is called. The

layout method on cell objects has arguments for controlling the overall dimensions.

[19]: cell = tube.layout(width=1, height=1, depth=1)

cell

[19]:

5

After layout comes the render, which happens in the method render_cvs. This has argument pos

which changes the point-of-view.

[20]: assoc.render_cvs(pos="northwest")

[20]:

The default is orthographic projection, but we can also do non-orthographic projection for a more

cinematic e�ect.

[21]: # TODO: pip_radius default is too small for projective render

cell = assoc(pip_radius=0.2).layout(height=1)

cell.render_cvs(ortho=False, eyepos=[-0.8, -2., 0])

[21]:

6

4 More constraints

The pair-of-pants above can be further customized by adding more linear constraints. An example

of this is in the helper functions make_pants, make_tube, and make_pants_rev.

[50]: from huygens.wiggle import make_pants, make_tube

m = Cell0("m", fill=grey)

pop = make_pants(m)

tube = make_tube(m)

lhs = pop * (tube << pop)

rhs = pop * (pop << tube)

lhs = lhs.layout(width=2, height=1.5, depth=1).render_cvs(pos="north")

rhs = rhs.layout(width=2, height=1.5, depth=1).render_cvs(pos="north")

cvs = Canvas().insert(0, 0, lhs).insert(10, 0, rhs)

cvs.text(6.5, 2, "$=$", [Scale(2.0)])

[50]:

5 Decorating the vertices

We can put labels in the vertex, or an arbitrary decoration. This is done using a Canvas object.

The cell vertex is called the �pip�.

[22]: p = path.circle(0, 0, 0.2)

cvs = Canvas().fill(p, [white]).stroke(p).text(0, 0, "a", st_center)

cvs

[22]:

We also can override cell's attribute (producing a copy of the object) using the call syntax.

7

[23]: assoc(pip_cvs=cvs)

[23]:

6 More examples

We use the st_braid stroke style to show a braid of objects in a monoidal bicategory.

[24]: from huygens.wiggle import st_braid

pos = "northwest"

eyepos=[0.6,-3,1]

l = Cell0("l", fill=pink)

m = Cell0("m", fill=grey)

m_ = m(st_stroke=st_braid)

l_ = l(st_stroke=st_braid)

l_l = Cell1(l, l, pip_color=None, stroke=None)

m_m = Cell1(m, m, pip_color=None, stroke=None)

Rneg = Cell1(l@m_, m_@l, pip_color=None, st_stroke=st_dotted)

Rpos = Cell1(m_@l, l@m_, pip_color=None, st_stroke=st_dotted)

b_neg = Cell2(Rneg, Rneg, pip_color=None)

b_neg.layout(width=1, height=1).render_cvs(pos=pos)

[24]:

And the unbraid 2-cell.

8

[25]: tgt = l_l @ m_m

b_plus = Cell2(tgt, Rneg << Rpos, cone=0.5)

b_plus_i = Cell2(Rneg << Rpos, tgt, cone=0.5)

b_plus.layout(width=1, height=0.7).render_cvs(pos=pos)

[25]:

A small portion of the Zamolodchikov tetrahedral equation served to stress test the whole system.

This example already uses over 1000 variables in the constraint satisfaction.

[26]: alpha = 0.5

green = color.rgb(0.1, 0.7, 0.2, alpha)

blue = color.rgba(0.0, 0.37, 0.90, alpha)

pink = color.rgba(1.0, 0.37, 0.36, alpha)

grey = color.rgba(0.85, 0.85, 0.85, alpha)

cream = color.rgba(1.0, 1.0, 0.92, alpha)

cyan = color.rgba(0.0, 0.81, 0.80, alpha)

yellow = color.rgba(1.0, 0.93, 0.4, alpha)

Cell2.pip_color = None

Cell2.cone = 1.

l = Cell0("l", fill=yellow, st_stroke=st_thin)

m = Cell0("m", fill=green, st_stroke=st_thin)

n = Cell0("n", fill=pink, st_stroke=st_thin)

o = Cell0("o", fill=grey, st_stroke=st_thin)

l_l = Cell1(l, l, pip_color=None, stroke=None)

m_m = Cell1(m, m, pip_color=None, stroke=None)

n_n = Cell1(n, n, pip_color=None, stroke=None)

o_o = Cell1(o, o, pip_color=None, stroke=None)

l_ = l(st_stroke = st_braid+st_thin)

m_ = m(st_stroke = st_braid+st_thin)

n_ = n(st_stroke = st_braid+st_thin)

o_ = o(st_stroke = st_braid+st_thin)

def braid(n, o):

o_ = o(st_stroke = st_braid+st_thin)

9

on_no = Cell1(o_@n , n@o_ , pip_color=None, st_stroke=st_thick+[red.alpha(0.

↪→5)])

return on_no

cell = (l_l @ m_m @ braid(n, o)).extrude()

cell = (l_l @ braid(m, o) @ n_n).extrude() << cell

cell = (

Cell2((o_o@l_l)<<braid(l,o), braid(l,o)<<(l_l@o_o)) @

Cell2(braid(m,n)<<(m_m@n_n), (n_n@m_m)<<braid(m,n))) << cell

cell = (o_o @ braid(l,n) @ m_m).extrude() << cell

cell = (o_o @ n_n @ braid(l,m)).extrude() << cell

top = cell

def yb(m,n,o):

tgt = (o_o @ braid(m,n)) << (braid(m,o) @ n_n) << (m_m @ braid(n,o))

src = (braid(n,o) @ m_m) << (n_n @ braid(m,o)) << (braid(m,n) @ o_o)

cell = Cell2(tgt, src)

return cell

bot = (l_l<<l_l<<l_l).extrude() @ yb(m,n,o)

bot = (

(o_o @ n_n @ braid(l,m)).extrude() <<

(o_o @ braid(l,n) @ m_m).extrude() <<

(braid(l,o) @ n_n @ m_m).extrude() << bot)

top * bot

[26]:

7 Cell attributes

Default values for various attributes can be set on the classes themselves.

10

[27]: from huygens.wiggle import black, st_normal, st_Thick

class Atom(object):

" abstract base class for all cell objects "

class Cell0(Atom):

"These are the 0-cells, or object's."

fill = None

stroke = black

st_stroke = st_normal

pip_cvs = None

on_constrain = None

class Cell1(Atom):

stroke = black

st_stroke = st_Thick

pip_color = black

pip_radius = 0.06

pip_cvs = None

on_constrain = None

class Cell2(Atom):

pip_color = black

pip_radius = 0.08

pip_cvs = None

cone = 0.6 # closer to 1. is more cone-like

on_constrain = None

now remember the real classes

from huygens.wiggle import Cell0, Cell1, Cell2

8 Saving output

From any Cell0, Cell1, or Cell2 object, we can extract a Canvas object which knows how to write

a �le to disk.

[28]: cell = Cell0("n", fill=pink)

cvs = cell.render_cvs()

cvs.writePDFfile("cell.pdf")

cvs.writeSVGfile("cell.svg")

cvs.writePNGfile("cell.png")

11

